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Human-robot interactions with an autonomous health screening robot in
long-term care settings

Cristina Getson and Goldie Nejat

Autonomous Systems and Biomechatronics Lab, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada

ABSTRACT
Socially assistive robots are increasingly being considered to help address the shortage of carework-
ers in long-term care, which has been further exacerbated by the COVID-19 pandemic. In this paper,
we present the first human-robot interaction study with care staff and an autonomous screening
socially assistive robot in a long-term care facility. We assessed: (1) overall perceptions, experiences
and attitudes of care staff prior to and after interacting with the robot, and (2) perceived workload
and usability of the robot by administrators and management staff. Results show staff had over-
all high ratings of the robot, with a statistically significant increase identified for cognitive attitude
towards the robot after interaction. Furthermore, we found that overall, perceived workload was
moderately low as defined by the NASA Task Load Index while using the robot screener, and the
usability rating of the robot was rated between OK and Good by the System Usability Scale. Person-
alization of the robot was found to be an important factor for usability. Staff enjoyed using the robot
and had high willingness to frequently use it. In general, our robot study motivates the application
of autonomous socially assistive robots from the staff perspective for repetitive tasks in long-term
care homes.
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1. Introduction

The need for care workers has been exceeding the human
resources available [1,2], with increasing demands placed
on existing healthcare staff in long-term care (LTC) due
to a growing older population [3]. Furthermore, staff
shortages and high turnover rates have further escalated
this need during the COVID-19 pandemic [4,5]. Techno-
logical solutions, including robots, are needed for LTC to
meet the increasing demands on staff [1].

During the pandemic, socially assistive robots (SARs)
were used to help minimize human-human contact, to
ensure risk-free environments, and to promote physi-
cal and psychological well-being [6,7]. Additionally, they
have helped alleviate staff workload and ensured staff
safety by performing functions such as receptionist,
telepresence to communicate between residents and fam-
ily members or medical staff, and monitoring the health
of residents [8]. Our own prior research included the
development and deployment of an autonomous SAR for
COVID-19 screening of staff working in a LTC home,
where we introduced the robot screener to support the
human screening process, and investigated staff’s over-
all interaction experiences with, attitudes toward, and
acceptance of a socially assistive robot for the screening
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task [9]. This prior study investigated staff perceptions
and acceptance of a social robot over an extended period
of time, and within the context of technology adoption.
Our objective was not for the robot to replace a human,
but rather to provide an additional resource to help with
the screening task during the busy shift commencement
times.

In this paper, we extend our research work on our
screening robot by further investigating and analyzing
the perceived workload and usability of utilizing a SAR
for the pertinent screening task to ensure uptake of the
technology during and post-COVID. Both workload and
usability with respect to the introduction and direct use
of SARs by staff in LTC homes for robot-staff interac-
tions during the pandemic have not yet been explored;
these are important factors in assessing ease of use and
the willingness of staff to adopt and use SARs. When a
new technology is first introduced, such factors can act
as barriers to uptake [10]. This research contributes to
the design and implementation of SARs as an additional
resource in a long-term care setting from the staff per-
spective, by investigating the ease of use, usability, and
impact on staff workload during a high-stress time when
increasing work demand was placed on staff members.
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Additionally, it contributes to the emerging but growing
body of research exploring social robot-assisted human-
interaction tasks in healthcare settings, where staff need
to complete multiple tasks.

Staff technology readiness, defined as ‘preparedness
and willingness to accept and use new technology to
achieve goals at work’ [11], is a key consideration
in human-robot interactions (HRI) [12]. Furthermore,
organizational support is a key element in promoting
technology readiness [13]. Themediation of the incorpo-
ration and use of robotic technology by main managerial
and administrative stakeholders at care facilities helps
reconcile barriers to implementation, such as technical
issues and complexity of use [14].

2. Related work

The use of robots by staff in long-term care settings
pre-pandemic hasmainly focused on attitudes and accep-
tance of robots providing entertainment such as Bingo
[15], practical assistance [16], and health monitoring
[17]. Herein, we categorize and discuss HRI studies that
have considered the workload and/or usability of SARs
by care workers.

2.1. Socially assistive robot workload studies with
care workers

Workload can be defined as the cost incurred by humans
when performing a task in order to achieve a specific level
of performance [18]. It is influenced by the task require-
ments, the circumstances under which it is performed,
and the skills, behaviors, and perceptions of the humans
involved [18]. In social HRI, workload has mainly been
measured using either semi-structured interviews and
observations, such as in [19,20], and questionnaires, such
as in [15]. We discuss workload as evaluated by care
workers when using SARs.

In [19], care worker usage of the Pepper robot was
observed in a care home during the pandemic. A range
of robot psycho-social activation (age guessing, playing
songs) and cognitive activation (quiz games) applications
were made available for care workers to choose from for
robot interactionswith residents. No specific instructions
on how to use the robot were provided. Observations
of care workers and management staff, along with semi-
structured interviews, and log files of robot usage time
and usage patterns were collected. Care workers mainly
used the robot by placing it in residents’ rooms for one-
on-one interactions. Interviews with staff showed that
the robot did not reduce staff workload in terms of per-
sonnel or time resources, however, it was perceived as a

useful tool to assist care workers in their daily work with
residents.

In [20], the views and attitudes of care workers on the
use of robots in care homes were obtained through semi-
structured interviews. The care workers had previously
observed Pepper interacting with residents by entertain-
ing themwithmusic, videos, playing games, telling jokes,
displaying the news, or providing reminders, as out-
lined in [21]. In general, staff had positive views about
the robot and saw robots as having the potential to be
supplementary tools to human carers, particularly by
sharing workload and helping to improve care already
provided.

In [15], care workers, without any robotic experience,
taught the socially assistive robot Tangy how to facili-
tate recreational activities such as Bingo games through
learning from demonstration. A 3-part post-interaction
questionnaire was administered to care workers, mea-
suring user experience through open-ended questions,
perceived workload through the NASA Task Load Index
(NASA-TLX) questionnaire [18], and perceived usability
through the System Usability Scale (SUS) questionnaire
[22]. The results showedmoderately low perceived work-
load for teaching and personalizing the robot’s verbal and
nonverbal facilitation behaviors.

2.2. Socially assistive robot usability studies with
care workers

The Standards Organization (ISO 9241-11) [23] defines
usability as ‘the extent to which a system, product or
service can be used by specified users to achieve spec-
ified goals with effectiveness, efficiency and satisfaction
in a specified context of use.’ In HRI, usability takes into
account the overall quality of a user’s experience when
interacting with a SAR [24]. It deals with user perception
of the interface, the interaction, and the outcome [25].
Robot usability in HRI scenarios with care workers has
been evaluated through interviews and questionnaires,
such as in [26,27].

In [26], the usability of the small-size robot NAO was
compared to that of a tablet in helping older adults in
an elderly care facility complete a set of health monitor-
ing and physical training tasks. For each technology, the
older adults completed the SUS along with 5-point Likert
scales for perceived usefulness, enjoyment, and control.
They then stated their preference (for NAO or the tablet)
via a short interview. The SUS scores, (representing a D
on the grade scale as interpreted in [28]), showed that
both technologies suffered from usability issues, such
as not hearing the robot and responding to it in time.
The scores for perceived usefulness and enjoyment were
positive for both technologies. However, a third of the
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participants preferred the NAO robot over the tablet for
monitoring and health training.

In [27], a customized software version of the NAO
robot, called Zora, was used by care workers to stimulate
physical activities of older adults in LTC. Care workers
evaluated the robot’s usability through amodifiedUsabil-
ity, Satisfaction, Ease of Use (USE) questionnaire. Quali-
tative data were also obtained through observations and
interviews. The results showed that 67% of care work-
ers experienced more fun at work when using Zora. The
majority of them indicated they were happy when work-
ingwithZora and believed that the residentswere content
when using Zora.

In [15], the SUS questionnaire was used to evaluate
perceived usability of care workers in teaching the Tangy
robot how to facilitate Bingo games. Themean SUS scores
were interpreted with an OK rating. Improvements were
suggested with respect to comfort by providing more
teaching trials on the system and increasing the teaching
speed for the activity.

2.3. Summary

A handful of studies have quantitatively measured both
workload and usability in social HRI. In [29], mental
workload and usability weremeasured for a teleoperation
task, however, the remote users were not care workers.
With respect to caregivers, in [15] workload and usabil-
ity were measured for using a learning by demonstration
system to teach the robot to assist residents, rather than
caregivers’ direct interactions with the robot.

Whereas our application focuses on the use of an
autonomous SAR for direct staff-robot social interactions
to help staff with a required task administered by the
robot (health screening). To the authors’ knowledge, no
studies have yet been conducted that investigate work-
load and usability of a SAR by care staff in LTC during
the pandemic using standardized measurement scales,
such as NASA-TLX and SUS. Due to increasing interest
in deploying SARs to help with staff shortages in LTC
settings [30], there is a need to investigate how these
robots impact workload and how their usability affects
caregivers.

3. Research questions

This work addresses the following research questions:

• RQ1: Does interacting with a SAR for screening have
minimal impact on staff workload, as measured by the
NASA-TLX?

• RQ2: Does robot perceived usability, as measured by
the SUS, impact thewillingness of staff to use the SAR?

4. Autonomous socially assistive robot
COVID-19 screening study

Our objective was to conduct an exploratory HRI study
during the COVID-19 pandemic to investigate the uti-
lization and effectiveness of a social interactive screening
robot in a LTC setting. This study took place in the Fall
of 2021.We evaluated staffmembers’ experience with the
robot, as well as how demographics influence staff atti-
tudes. The robot screening study took place at a LTC
home in Toronto, Canada, with the Pepper robot over
the course of twomonths. The study was approved by the
University of Toronto’s Ethics Board.

4.1. Participants

From approximately 200 staff members at the LTC
home, 84 participants signed up for the study. These
included administrators, nurses, personal support work-
ers, and those working in rehabilitation and social care.
Each participating staff member was given a unique QR
code to use during the robot screening task to main-
tain anonymity for the purpose of the study. Staff were
recruited through: (1) posting flyers throughout the
home with information about the study, (2) emails sent
from the home administrators introducing the study, and
(3) a demopresentation of the screener robot at the home.

4.2. Robot design

Participants interacted socially with the Pepper robot
in an autonomous way. A contactless thermometer was
placed next to the robot, along with a box of masks on a
table, as seen in Figure 1. The robot used the QR code
to anonymously keep track of all the people screened.
The robot asked screening questions provided by the
Ontario Ministry of Health and responses were recorded
in a CSV file, which was automatically emailed to an
administrative staff member at the LTC home.

A graphical user interface (GUI) was developed using
HTML for Pepper’s tablet, which displayed correspond-
ing text for the robot’s speech, images of the person
with/without a mask, an image of the detected QR code,
and a progress bar at the top of the screen to indi-
cate screening progress. A video of the screening proce-
dure with Pepper can be found on our Youtube channel:
https://www.youtube.com/watch?v=X6EKXENu9bY.

Screening events are recorded in a CSV file, as pre-
sented in Figure 2, which includes a time-stamp, temper-
ature confirmation, face mask confirmation, unique QR
code, and answers to the four health screening questions
(found in the Appendix). This CSV file is automatically
emailed by the robot to administrative staff at the facility.

https://www.youtube.com/watch?v=X6EKXENu9bY
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Figure 1. Set-up at the front entrance of the long-term care
home, with the Pepper robot, masks, contactless thermometer,
and a staff member.

A Lenovo Thinkpad P1 Gen3 laptop running Ubuntu
18 was used to control the robot using software we devel-
oped in Python. We used an off-the-shelf mask detection
software, AIZOOTech FaceMask Detection algorithm,
which uses Convolutional Neural Networks, available
on Github [31]. The algorithm, composed of parts of
WIDER Face [32] and Masked Faces (MAFA) datasets
[33], is able to classify faces with masks (with an average
accuracy of 91.9%) and without masks (average accuracy
of 89.6%) [31]. Within the class ‘faces with mask’, there
are two sub-classes: (1) correctly worn, and (2) incor-
rectly worn, where the former detects if the mask covers
both the nose and the mouth. This detection algorithm
has been used by Softbank Robotics for the Pepper robot
running QiSDK [34], and by several researchers [35,36].

4.3. Procedure

The robot was placed at the front entrance of the LTC
home, to screen care workers as they arrived to start
their shifts, at both 6:30 am and 2:30 pm. Management
and admin staff arrived at 9:00 am to undergo screening.
The robot interacted and asked questions autonomously;
screening steps are presented in Figure 3 and Table 1. If
the robot screening failed due to any of the following con-
ditions: (1) temperature > 37.5°C, (2) a health screening
question was answered with ‘Yes’, or (3) a missing or
non-registered QR code; then the robot sounds an audi-
ble alarm and Pepper would ask them to go see a staff
member at reception, also situated at the entrance.

The mask detection method detects if multiple peo-
ple are within the field of view of Pepper’s RGB camera;
if this is true, the robot will instruct them to keep their
social distance. Then, mask detection will take place only
after the robot requests that the person takes amask from
the box ofmasks provided on the adjacent desk, to ensure
a smooth flow of the screening process. A visual confir-
mation is used to let the person know if their mask is
properly worn with Pepper displaying an image of the
person’s face on its screen, to further provide instruc-
tions. This image of the person is only shown on the
screen and is not stored by the robot to ensure anonymity
of the participants.

4.4. Measures

For all staff : Pre- and post-study 5-point Likert question-
naires were completed by participants, before interacting
with the screening robot, and at the end of the study,
after having interacted at least once with the robot. These

Figure 2. CSV file sample with screening time stamp, temperature, mask, QR code confirmation, and answers to the 4 screening
questions.
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Figure 3. Robot screening images in 9 steps.

questionnaires consisted of 7 main attributes: screen-
ing experience, perceived efficiency, cognitive attitude,
freeing up staff, perceived safety, affective attitude, and
intent to use the robot. Questions for attitude, per-
ceived enjoyment, and intent to use were based on the
Almere model [37]. The pre-study questionnaire also
contained demographic information (age range, gender,

occupation) and previous robot experience (no expe-
rience, beginner, intermediate, advanced). In total, we
gathered 56 pre-study and 27 post-study questionnaires
from the same group of staff participants. The smaller
number of post-study questionnaires was due to the
prevalence of the Omicron variant of the virus, which
placed the LTC home in lockdown and stopped our HRI
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Table 1. List of robot behaviors and actions for the 9 screening steps.

Robot Behavior Robot actions (speech and gestures). Corresponding text for robot’s speech is displayed on its tablet.

1. Staff Detection and Greeting Pepper waves and says, ‘Hello! I’m Pepper, the health screening robot.’
2. Temperature Acquisition Pepper points to the contactless thermometer and says, ‘Please take your temperature.’
3. Temperature Confirmation If no fever is detected (< 37.5°C), Pepper says, ‘Great, no fever!’

If an elevated temperature is detected (> 37.5°C), Pepper sounds an audible alarm and says, ‘Please check with reception.’
4. Mask Request Pepper gestures with its hand and says, ‘Please take a mask and put it on.’
5. Mask Confirmation Pepper checks to confirm if mask is on correctly (using its forehead RGB camera to take a photo and an adapted version of AIZoo

Tech’s FaceMaskDetection software [31]) and displays an image of the person on its tablet.
If their mask is on properly, Pepper confirms this by saying, ‘Thanks!’
If their mask is not on properly, Pepper says, ‘Is your mask on properly? I can’t tell yet.’
If there are too many people in the robot’s viewfinder, Pepper says, ‘One at a time please. Remember to keep social distancing.’

6. QR Code Acquisition Pepper gestures to its forehead camera and says, ‘Please showme your QR code. Hold it in front of my forehead.’
QR code scanning is done with the robot’s forehead RGB camera and Pepper’s barcode reader software.

7. QR Code Confirmation A confirmation screen displaying an image of the QR codewill show on the tablet, and Pepper says, ‘Got it, thank you verymuch.’
If no QR code is scanned, Pepper says, ‘Please try again.’

8. Health Screening Questions Pepper asks health screening questions provided by the Ontario Ministry of Health (which are updated regularly), and waits for
a Yes/No answer before proceeding to the next question.

9. Screening Verification If all answers to the screening questions are No, Pepper waves and says, ‘Thank you, you may go inside. Have a nice shift, bye!’
If staff answered Yes to one or more questions, Pepper sounds an audible alarm and says, ‘Please go see reception.’

Table 2. Descriptive statistics for pre-study, with post-study questionnaire results in parentheses.

Descriptive Statistics Pre(Post)-Study

Questions Pre-Study (Post Study) Median (x̃) IQR Min Max

Q1. Screening experience
I have had a good experience with the way the health screening (the robot health screening) is being
conducted at Yee Hong

4(4) 2(0) 2(3) 5(5)

Q2. Efficiency
It would be (it is) more efficient if the screening was done/is done automatically/with the robot 4(4) 2(0.75) 1(2) 5(5)
Q3. Cognitive attitude
I think having a robot ask COVID health screening questions would be (is) a good idea 4(5) 1.5(1) 1(1) 5(5)
Q4. Freeing up staff
Using a robot would (did) free up staff that need to do the screening 4(4) 1(1) 1(5) 5(5)
Q5. Safety
I think a robot would make (makes) the health screening process safe 4(5) 1(1) 1(3) 5(5)
Q6. Affective attitude
I think a robot will make (makes) the screening process enjoyable 4(4) 1(0.75) 1(2) 5(5)
Q7. Intent to use
I would (would continue to) use a robot to do the COVID screening at Yee Hong 4(4) 1(0.75) 1(3) 5(5)

study as our researchers were not allowed into the facility
at this time.

For administrators and management staff only: An
additional, post-study questionnaire for administrators
andmanagement staff, whowould be in charge of deploy-
ment, set-up and adoption of the screening robot within
the home, also included the NASA-TLX [18], and the
SUS [22,38]. We focused on management and adminis-
trative staff within the LTC home, as management plays
a key role in implementing robotics, as shown in [39].
The NASA-TLX, listed in Appendix 3, was used to deter-
mine howmuch effort, both mentally and physically, was
required to set up and use the robot. The SUS, listed
in Appendix 4, was used to measure the usability of
the robot for the screening task. Eleven questionnaires
were obtained from administrators and managerial staff
to directly assess perceived usability and perceived work-
load.

5. Results

Our HRI study investigated staff members’ overall expe-
riences with a social screening robot in a LTC facility
and explored how demographic information influenced
staff’s attitudes and their intent to use a robot [9]. Table 2
presents the pre/post-study questionnaire with descrip-
tive statistics.

We conducted non-parametric tests as we are using
Likert scale data, which are ordinal data. Non-parametric
tests are recommended to be used when the sampling
distribution is non-normally distributed [40]. We con-
ducted a series of Shapiro–Wilk tests of normality, and
concluded that our data were non-parametric (p < 0.05).

When comparing overall pre- and post-study results
using a Wilcoxon Signed Rank (WSR) test, a statistical
significance (Z = 2.060, p = 0.039) was found for cogni-
tive attitude (Q3) after participants interacted with Pep-
per (x̃ = 5, IQR = 1) compared to prior to interaction
(x̃ = 4, IQR = 2).
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Gender: The 56 pre-study questionnaire participants
consisted of 31 women, 8 men, and 17 did not specify
a gender. The 27 post-study questionnaire participants
consisted of 15 women, 11 men, and 1 did not specify a
gender. We performed a WSR test to compare within the
gender groups before and after the study, and a statistical
significance (Z = 2.000, p = 0.046) was found for cog-
nitive attitude (Q3) for men after interacting with Pep-
per (x̃ = 5, IQR = 1) compared to prior to interaction
(x̃ = 4, IQR = 0.25).

Age: In our pre-study questionnaire, the age distribu-
tionwas 20–60+; themedian age groupwas 40–49. In the
post-study, the age distribution was 30–60+; the median
age group was 50–59, as there were no participants post-
study in the 20–29 age group. No significant differences
were found between age groups as determined byKruskal
Wallis (KW) tests (p > 0.05), or within age groups when
comparing results prior to and after having interacted
with the robot, as determined by WSR tests (p > 0.05).

Occupation: Staff occupations were grouped into:
(1) Administrators (Admin) and Managers (pre-study
n = 11, post-study n = 12), which included those work-
ing in human resources, reception, information technol-
ogy, and management roles; (2) Nurses, including nurse
practitioners, registered nurses, and registered practical
nurses (pre-study n = 8, post-study n = 4); (3) Personal
Support Workers (PSW) (pre-study n = 14, post-study
n = 7); and (4) Rehabilitation & Social Care (RSC) (pre-
study n = 8, post-study n = 4), including social work-
ers, recreational/activation coordinators, physiothera-
pists, occupational therapists, and dieticians. No signif-
icant differences were found between occupation roles,

as confirmed by KW tests. When comparing the same
occupation group prior to and after having interacted
with the robot, results showed that the RSC group had a
statistical significance for Q2 (efficiency), as determined
by WSR tests (Z = 2.000, p = 0.046). The RSC group
had a slightly higher median score prior to interacting
with the robot (x̃ = 4, IQR = 1) than after interacting
with Pepper (x̃ = 3.5, IQR = 1). A statistical difference
(Z = 2.000, p = 0.046) was also found forQ4 (freeing up
staff). The RSC group had a slightly higher median score
prior to interacting with the robot (x̃ = 4.5, IQR = 1)
than after interacting with Pepper (x̃ = 4, IQR = 0.25).
Results also showed the PSW group had a statistical
significance for Q5 (safety), as determined by a WSR
test (Z = 2.070, p = 0.038). This group thought a robot
would make the health screening process safer after hav-
ing interacted with Pepper (x̃ = 5, IQR = 1) than prior
to interaction (x̃ = 4, IQR = 1.75).

Previous Robot Experience: For Previous Robot
Experience, responses included No Experience (n = 11);
Beginner (n = 10), defined as seeing robots on tele-
vision or at museums; Intermediate (n = 4), defined
as seeing robots used in the workplace, delivering
packages or interacting with residents; and Advanced
(n = 2), defined as hands-on experience using a robot
at work. Differences were found between the groups;
namely, results showed a statistically significant differ-
ence for Q2 (efficiency), as determined by a KW test
(H(2) = 6.018, p = 0.049). Post-hoc non-parametric
MWU tests with Bonferroni correction of α = 0.016
(U = 26.5, Z = –2.244, p = 0.043, r = 0.49) showed
those with no prior robot experience rated robot

Figure 4. NASA-TLX Mean Scores for Workload Factors, with Standard Deviation Represented by Vertical Lines.
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Figure 5. NASA-TLX individual scores for administrator and managerial staff for robot screening task.

efficiency higher (x̃ = 4, IQR = 1, min = 4, max = 5)
than those with beginner experience (x̃ = 4, IQR = 1,
min = 2,max = 5). No statistical significance was found
between the other experience groups.

To address research questions presented in Section 3,
we measured perceived workload using NASA-TLX and
perceived usability using SUS.

5.1. Perceivedworkload

The NASA-TLX mean scores and individual partici-
pant scores are presented in Figure 4 and Figure 5. The
six workload factors (mental demand, physical demand,
temporal demand, performance, effort, frustration) are
presented with mean scores (μ) and standard deviations
(σ ) for eachworkload factor, alongwith the overall work-
load. The individual scores ranged from 10.67 to 70.67.
These scores were weighted, by presenting participants
with workload factor pairs and asking them to choose
the factor that was more important to their experience
of workload for the robot screening task. The overall
workload was then calculated: μ = 44.67, σ = 19.05.

5.2. Perceived usability

Each statement of the SUS questionnaire and its corre-
sponding descriptive statistics are presented in Table 3.
Individual participant SUS scores are presented in
Table 4, and the overall SUS score is presented in
Figure 6, with μ = 62.5, σ = 14.5, x̃ = 57.5, min = 45,
max = 90.

Staff rated their willingness to frequently use the robot
for screening high (Statement 1, x̃ = 4, IQR = 1), as
well as how quickly they learned to use the robot (State-
ment 7, x̃ = 4, IQR = 1). They also felt confident using

the robot screener (Statement 9, x̃ = 4, IQR = 1) and
did not find it awkward to use (Statement 8, x̃ = 2,
IQR = 2). Staff rated the remaining questions as neu-
tral. Namely, they were neutral about the robot being
too complex for the screening task (Statement 2, x̃ = 3,
IQR = 1.5); that theywould need the support of a techni-
cal person to be able to use the robot screener (Statement
4, x̃ = 3, IQR = 1); that there was too much incon-
sistency with the robot screening system (Statement 6,
x̃ = 3, IQR = 1); and that they needed to learn a lot of
things before they could use the robot screener (State-
ment 10, x̃ = 3, IQR = 3). They were also neutral in
their rating of the robot being easy to use for screening
(Statement 3, x̃ = 3, IQR = 1), and at finding the various
functions of the robot screening system well integrated
(Statement 5, x̃ = 3, IQR = 1). The rating for Statement
3 had a 64% frequency for the neutral rating; the remain-
ing 36% rated it positively, which can correspond to the
moderately low effort rating on the NASA-TLX.

6. Discussion

Our mean overall workload score falls within the lower
quartile of the mean workload scores for robot operation
tasks, as reported in [41]. Furthermore, it is also lower
than robot teaching tasks performed by care workers via
learning from demonstration [15]. This indicates lower
workload during autonomous screening on the part of
the user. With respect to socially assistive robots, overall
workload for care workers was also lower for the screen-
ing task compared to the learning from demonstration
task.

In general, perceived physical demand was rated low
(μ = 7.45, σ = 5.73). There was little physical demand
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Table 3. SUS Questionnaire with median (x̃), and frequency.

Frequency

Statement Median (x̃) IQR 1 2 3 4 5

1. I think that I would like to use the robot frequently for screening. 4 1 0 1 3 5 2
2∗ . I found using the robot for screening too complex. 3 1.5 3 2 6 0 0
3. I thought it was easy to use the robot for screening. 3 1 0 0 7 3 1
4∗ . I think that I would need the support of a technical person who is always nearby to be
able to use the robot screener.

3 1 1 2 5 2 1

5. I found the various functions of the robot screening system were well integrated. 3 1 0 0 6 5 0
6∗ . I thought there was too much inconsistency in the robot screening system. 3 1 1 3 5 2 0
7. I would imagine that most staff would very quickly learn to use the robot screener. 4 1 0 2 2 5 2
8∗ . I found the robot screener very awkward to use. 2 2 4 3 3 1 0
9. I felt very confident using the robot screener. 4 1 0 1 4 5 1
10∗ . I needed to learn a lot of things before I could use the robot screener. 3 3 4 0 3 3 1
∗ Statements are negatively worded.

Table 4. Participant SUS scores.

Participant 1 2 3 4 5 6 7 8 9 10 11

SUS score 57.5 57.5 47.5 52.5 62.5 70.0 80.0 90.0 50.0 75.0 45.0

Figure 6. Box andwhisker plot of SUS scores with quartiles (box),
min-max (whisker), median (line), and mean (x).

on the user during the screening process, as the inter-
action was mostly social, and only required the user to
stand in place. The user only needed to turn to face the
robot and temperature sensor, hold up their QR code or
put on a mask. When interacting with a SAR, physical
demand is usually low, since the human is not required to
physically manipulate the robot, and interaction is done
through verbal and non-verbal communication [15]. The
screening robot also interacted in an autonomous mul-
timodal manner. The results also showed both perceived
mental (μ = 10.18, σ = 6.42) and temporal (μ = 10.18,
σ = 4.85) demandwere ratedmoderate.Mental demand
involves mental and perceptual activity, including think-
ing, deciding, looking, waiting to speak [18]. During the
robot screening, the user had to interact with the robot
in several ways: through speaking, following the robot’s

instructions, and waiting for their turn to complete an
action. The user needed to follow the robot’s instruc-
tions in the order they were given; they focused on the
robot and paid close attention to its instructions, which
is directly linked to mental demand. A similar outcome
was found in [15].

Temporal demand is related to the time it takes to
complete the screening task and the pace of the screen-
ing process [18]. Staff needed to complete the screening
process quickly in order to start their shifts on time.
Even though the robot screening process itself was short
(an average of 80 s), it was observed that many peo-
ple were in a rush at the beginning of their shifts. They
had to be patient, for example, by letting the robot first
finish speaking before answering its questions. It is pos-
sible that a moderate temporal demand could also be due
to unfamiliarity with the robot [15], since a lot of the
staff had no direct prior experience with a robot in the
workplace.

Overall, staff members rated their Performance as
moderately good (μ = 8.36, σ = 6.19) and Effort as
moderately low (μ = 8.91, σ = 4.5) during screening
with Pepper. Moderately good performance is associated
with satisfaction and successfully accomplishing the goal
of a task [18]. The moderately low effort shows staff were
able to follow the robot’s screening instructions, answer
questions easily, and successfully accomplish the screen-
ing task each time. In general, the lower the effort, the
higher the usability [42].

It is interesting to note that staff rated Frustration
as the lowest workload factor (μ = 7.27, σ = 4.92). We
postulate that since the admin and management staff
observed first-hand the benefits of using robots during
the pandemic on staff resources, and since frustration
can be caused by time delays [43], minor delays due to
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robot speech recognition, where the robot had to ask a
person to repeat what they said due to the noisy environ-
ment, were tolerated. Having low frustration is a benefit
to conducting an HRI task [43].

The overall mean SUS score (μ = 62.5, σ = 14.5)
falls between the OK and Good rating, when compared
to the adjective rating scale in [28]. Improvements can
be made to the robot’s speech recognition in noisy and
crowded environments. As the majority of staff had no
prior experience to beginner experience with robots, this
may have impacted the overall SUS score, as there is
evidence that has shown SUS is related to users’ expe-
rience with a technology product [38]. Namely, people
withmore experience will be more likely to providemore
favorable ratings [44].

In general, the robot was found to be easy to use, as
staff rated frustration, perceived physical demand and
effort low on the NASA-TLX. This addresses RQ1: Inter-
acting with a SAR for screening has minimal impact
on staff workload. Additionally, as measured by the fre-
quency of responses on the SUS questionnaire, staff had
high willingness to use the robot for screening, and
quickly learned to use it. This addresses RQ2: Robot per-
ceived usability impacts the willingness of staff to use the
SAR.

A human-like social robot was used for our HRI study
to promote natural communication, and eliminate the
need to train all the staff when using the robot for the
screening task during this high-stress period. Existing
systems, such as virtual agents and sensors, could achieve
similar screening outcomes. However, socially expres-
sive robots allow for natural face-to-face communication,
which provides benefits to user engagement, leading to
more successful task completion than when embodied
robots are not used [45]. Furthermore, they provide a
more engaging and enjoyable interaction as compared to
interaction with a non-expressive robots [46]. In a survey
of 33 studies comparing human interaction with phys-
ical robots and with virtual agents, it was shown that
physically present robots are more persuasive and were
perceived more positively than virtual agents [47]. For
example, when comparing a robot to a tablet delivering
healthcare instructions, a robot was rated as more socia-
ble, and users had more positive interactions with the
robot, alongwith increased participation in the suggested
activity [48].

Our set-up used an external free-standing non-
contact thermometer, as this closely resembles the
screening set-up used by the human screener. In addition,
we used the commercially available social robot Pepper
already in our lab, that did not have a built-in thermome-
ter but that could interact in amultimodalmanner (using

both speech and text), to expedite our study during the
pandemic.

We observed that a human screener could complete
the screening task in potentially a shorter time frame
than the robot screener, an average of 40–80 s for the
human screener compared to an average of 80 s for the
robot. Screening time depended on environmental fac-
tors, such as noise, and howmany people entered at once.
As our study was not focused on comparing human and
robot screening, which is in line with other research on
robot adoption in healthcare settings [15,49,50], we did
not quantifiably measure each human screening task to
determine descriptive statistics. Based on the data the
robot collected, technical failures occurred mainly due
to: (1) a noisy environment, which affected speech recog-
nition when answering screening questions, and (2) QR
code recognition, as some QR codes were presented at
a distance or were only partially shown to the camera,
causing the robot to time out. The success rate of speech
recognition was 64%; this is similar to other HRI studies
conducted in noisy environments [26,51,52]. The suc-
cess rate for QR code recognition was 84% and for mask
detection was 100%. A mask detection failure (either an
error in detection or a time out) was never encountered,
due to the robot requesting that only one person be in
close proximity to the robot.

Staff were already used to the human screening for-
mat for a full year prior, whereas with the introduction of
a robot screener, it was a new technology they were now
interacting with. In our HRI study, we investigated staff
perceptions and acceptance of the robot over an extended
period of time, and within the context of technology
adoption. As people become more familiar with technol-
ogy, they develop usage skills related to it [53]. Therefore,
through prolonged interactions, the robot screening pro-
cedure could also decrease the overall screening time. It
takes more than two months for this familiarity to hap-
pen, which will lead to acceptance beyond the novelty
effect of adoption [54].

6.1. Subjective responses

Participants provided additional comments regarding the
perceived workload and usability of the screening robot.
We performed an inductive thematic analysis approach,
where we identified patterns and underlying themes in
the comments, which we coded and grouped into the
following four main themes: (1) enjoyment; (2) famil-
iarization; (3) technical issues; and (4) personalization.
Each theme and its associated comments are presented
in Table 5.
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Table 5. Identified themes for staff comments.

Themes Example comments

Enjoyment ‘I really enjoyed having Pepper here.’
‘Overall the robot was a pleasure to have around.’
‘Robot is friendly.’

Familiarization ‘It just takes a little bit of time to get used to.’
‘Patience is required when using autonomous robots.’

Technical issues ‘Noisy scenarios and environment also play a role in the
robot’s effectiveness.’

‘The robot had trouble picking up answers due to
background noise.’

Personalization ‘Maybe can choose different languages.’
‘I like how it follows me with its gaze.’

Participants’ comments on enjoyment correspond
with previous research on robot use and implementa-
tion that has found enjoyment to be a key enabler for use
[55]. Comments on familiarization suggest that usability
would improve over time; familiarization has been found
to positively affect implementation [56], and that over
time, the ease of use would improve [55].

Technical problems can be a key barrier to implemen-
tation [55], as was relayed in the comments. Loud back-
ground noise can negatively affect autonomous speech
recognition, as has also been noted in [57], [58]. Addi-
tionally, as staff in the LTC home were from Hong
Kong, Vietnam or mainland China, and Pepper spoke in
English, as requested by the LTC home, there were also
comments on personalizing the language of the robot to
potentially increase robot usability.

7. Limitations

Our robot screening study was impacted by the addi-
tional lockdown of the LTC facility due to the presence
of the Omicron variant of the virus, which caused us
to stop our study, and limited the number of post-study
questionnaires collected. Consequently, we did not have
the same number of post-study questionnaires as we
did pre-study questionnaires. As the data were gathered
anonymously, therefore, it was not possible to identify
and match the pre-study questionnaires with those who
completed the post-study questionnaires.

In general, the robot was able to accurately detect
masks and if people were social distancing, but due to
background noise at the front entrance of the facility, it
sometimes was not able to detect the Yes or No answers
to screening questions, which caused it to repeat itself
multiple times (up to 3 times). Even though we provided
the staff with onsite training and a manual on using the
robot so they would be able to deploy the robot on their
own for screening, there was high turnover at the front
desk, making it difficult for new staff to set-up the robot
to run autonomously if they did not receive the training.
In the future, we plan to periodically train front desk staff,

especially for when outbreaks occur, so that they do not
have to rely on the researchers.

8. Conclusions

Our HRI study with an autonomous screening robot for
staff took place in a high-risk environment during the
COVID-19 pandemic. We investigated the effects of age,
gender, occupation, and previous robot experience, along
with staff perceptions before and after interacting with
the robot, on 7 attributes: screening experience with-
out and with the robot, perceived efficiency, cognitive
attitude, freeing up staff, perceived safety, affective atti-
tude, and intent to use the robot. Overall, staff rated all 7
attributes high. We also measured how the SAR impacts
workload and how its usability affects care workers in a
LTC facility using the standardized NASA-TLX and SUS.
In particular, we investigated management and admin
staff perceptions of workload and usability of the SAR,
as these staff members are key stakeholders in the intro-
duction and uptake of new technology at care facilities.
The NASA-TLX results showed that staff found the robot
easy to use; and they rated perceived physical demand
and effort low. The SUS results showed high willingness
to use the robot in a screening context, and staff’s abil-
ity to quickly learn to use the robot. Our results motivate
the application of socially assistive robots from the staff
perspective for repetitive tasks within a long-term care
home, an area where technological solutions can help
with the increasing work demand on staff. Our study
shows that directly interacting with a SAR for a manda-
tory task during a high-stress time did not notably affect
staff workload and that staff remained open to using the
technology at the home in the future. This supports the
use of SARs to help with the increasing work demand on
staff.

Future work will include gathering the perceptions,
perceived workload, and perceived usability of the robot
from a greater number of staff members, including visi-
tors to the facility, over a longer period of time. This will
help familiarize staff with the capabilities of SARs, and
help increase the usability of and willingness to use SARs
for diverse tasks in LTC facilities.
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Appendices

Appendix 1. Health screening questions

Q1 Do you have a fever, chills, cough, shortness of breath, decreased or loss
of taste or smell, or unexplained fatigue?

Q2 In the last 14 days, have you or someone you live with traveled outside
of Canada?

Q3 In the last 10 days, have you been identified as a close contact of
someone who currently has COVID-19?

Q4 Is anyone you live with experiencing COVID-19 symptoms or waiting for
test results after experiencing symptoms?

Appendix 2. Pre/Post study questionnaire with the 7 attributes

Strongly disagree 1
Somewhat
disagree 2 Neutral 3 Somewhat agree 4 Strongly agree 5

Q1 (screening experience) I have had a good experiencewith theway the health screening (the robot health screening) is being conducted at YeeHong
Q2 (efficiency) It would be (it is) more efficient if the screening was done (is done) automatically with the robot
Q3 (cognitive attitude) I think having a robot ask COVID-19 health screening questions would be (is) a good idea
Q4 (freeing up staff) Using a robot would (did) free up staff that need to do the screening
Q5 (safety) I think a robot would make (makes) the health screening process safe
Q6 (affective attitude) I think a robot will make (makes) the screening process enjoyable
Q7 (intent to use) I would (would continue to) use a robot to do the COVID-19 screening at Yee Hong

Appendix 3. NASA-TLX task load index

Please place an ‘X’ along each scale at the point that best indi-
cates your experience during the robot teaching session, rang-
ing from low to high for statements 1–5 and good to bad for
statement 6.

1. Mental Demand: How much mental and perceptual activ-
ity was required during the robot screening (such as think-
ing, deciding, remembering, looking, waiting to speak)?
For example, was the screening task easy or demanding,
simple or complex, forgiving or exacting?

2. Physical Demand: How much physical activity was
required during the robot screening (e.g. pushing, pulling,
turning, controlling, activating, etc.)? Was the screening
task easy or demanding, slow or brisk, slack or strenuous,
restful or laborious?

3. Temporal Demand: How much time pressure did you feel
based on the rate or pace of the robot screening task? Was
the pace slow and leisurely or rapid and frantic?

4. Effort: How hard did you have to work (mentally or phys-
ically) to accomplish the robot screening task?

5. Frustration: How discouraged, stressed, irritated, and
annoyed versus gratified, relaxed, content, and complacent
did you feel during the robot screening task?

6. Performance: How successful do you think you were in
accomplishing the robot screening task? How satisfied
were you with your performance in accomplishing this
task with the robot?

Appendix 4. System usability scale

Please indicate your level of agreement (from StronglyDisagree
to Strongly Agree) to the following 10 statements.

1. I think that I would like to use the robot frequently
for screening.

2. I found using the robot for screening too complex.
3. I thought it was easy to use the robot for screening.
4. I think that I would need the support of a technical
person who is always nearby to be able to use the
robot screener.

5. I found the various functions of the robot screening
system were well integrated.

6. I thought there was too much inconsistency in the
robot screening system.

7. I would imagine that most staff would very quickly
learn to use the robot screener.

8. I found the robot screener very awkward to use.
9. I felt very confident using the robot screener.
10. I needed to learn a lot of things before I could use
the robot screener.
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